
Applied Aspect-
Oriented

Programming
Brian Sletten

Bosatsu Consulting
brian@bosatsu.net

No Fluff Just Stuff
 2007

Speaker Qualifications

• 14 years of software development
experience

• Been working with Aspects for 7 years

• Have own software consulting company
for design, mentoring, training and
development

• Currently working in Semantic Web, AOP,
Security and P2P domains

Agenda

• AOP Review

• Developmental Aspects

• Production Aspect

• Production Aspect Ideas

• Spring + AspectJ

• Static Introduction

AOP Review

Separation of Concerns

• Intellectual forebear to AOP

• Reduction of code coupling and
tangling

• Flexibility and Reuse in Design

• “Pay as You Go”

What is a Concern?

“...A specific requirement or consideration
that must be addressed in order to
satisfy the overall system goal...”

“AspectJ in Action”

Prism Metaphor for SOC

Business Logic Thread Synchronization

Persistence

Security

Logging

Requirements

Built System

Interception

DecoratorClass2 ReceiverDecoratorClass1

foo()

foo()

foo()

• “Catching” the call to the Receiver foo()

• Decorator Pattern is shown, but would be
similar for Dynamic Proxies and Servlet Filters

“Problems” with Design
Patterns

• Invasive, complex

• Requires foresight and planning to use

• Decorator works on instances, not
classes

Observer Example

<<Interface>>
Observer

update(Observable, Object) : void

Observable

addObserver(Observer) : void

Temperature

setTemp(double)

Thermometer

update(Observable,Object)

<<notifies>>

Complaint

• Why does Temperature have to extend
Observable?

• Inheritance is too strong of a
relationship for this behavior!

• Mixing Domain modeling with
Application logic

“Problems” with
Dynamic Proxies

• Requires the use of interfaces

• Works on instances

• “Wrapping” instances is an issue

What’s Really Going
On?

• The OO principles of Encapsulation
and Modularity should be applied to
design elements as well

• A Goal:

• 1:1 mapping between a design
concept and implementation

How Does Our Observer
Do?

• 1 Design Concept (State change
notification) : N Implementation
Constructs

• Every class that wants this behavior
has to be modified to include it

• Known as “Scattering”

Adding Other Concerns

• In addition to State Change notification,
we want

• Thread Synchronization

• Persistence

• Caching

Inverting the Ratio

• N Design Concepts : 1 Implementation
Construct

• Known as “Tangling”

• Hard to change

• Definitely not “Pay As You Go”

Tangling in Action

A

int x
int y
foo()
bar()

Logging and Tracing

• AOP Zealots always talk about logging
and tracing because they are extreme
cases of the whacked-out ratio

• 1:1000 or more!

Out With the OOLD?

• Is AOP just a conspiracy by technical
book publishers to force an overhaul of
our libraries?

OO Is Good For

Object Abstractions that fit well
with Class-based decomposition

A

foo()
bar()

C

foo()

B

foo()

D

baz()

E

baz()

OO Is Not As Good For

Concern Abstraction that does not
follow Class-based decomposition

A

foo()
bar()

C

foo()

B

foo()

D

baz()

E

baz()

Cross-Cutting Concerns

• Concerns that don’t fit nicely in Class-
based decomposition are called “Cross-
Cutting” concerns

• They apply across arbitrary portions of
class hierarchies

Tyranny of Dominant
Decomposition

• Phrase comes from the Hyper/J team

• Languages like Java support classes,
interfaces and packages but not
“features”

• “When All You Have is a Class...”

What is an Aspect?

• An Aspect is a unit of modularization
for cross-cutting concern

• An attempt to maintain the 1:1 ratio for
design concept to implementation
construct

Benefits of AOP

• Where possible, each design concept
has a simple, clear implementation

• Modules are minimally coupled

• Better chance for reuse

• “Pay As You Go”

How Do You
“Do AOP”?

• Remember the Prism Metaphor

• Separately modularized concerns are
re-woven to implement a particular
system

• Compile time or Runtime

• Aspects can be Development or
Production-oriented

What is AspectJ?

• A tool to support AOP in Java
developed at Xerox PARC, now
maintained as part of Eclipse project

• Aspects look like classes

• Woven against other source code

• Requires separate compiler but will run
on any JVM with runtime support

Warning : Jargon
Alert

Join Points

• Any identifiable point in the control
flow of a program

• Method calls (caller side)

• Method execution (callee side)

• Accessing an instance variable

• A constructor

Pointcuts

• Expressions that select some set of join
points and their context

• arguments

• object being called

• return values

• method signature

Advice

• Pieces of code that are associated with
one or more pointcuts

• Executed when a selected join point is
reached
• before advice runs before join point

• after advice runs after join point

• around advice runs around join point

How Does AspectJ Work?

• Concerns are implemented in aspects
• Pointcut Designators describe how the

aspect is to be woven in to a codebase

• Join Points are the hooks upon which
Advice is “hung”

Development
Aspects

Design By Contract

• Bertrand Meyer argues that Unit-Tested
components in isolation are not
sufficient for quality software

• The interaction needs to be explicit and
demonstrable

• Components must abide by a
“contract”

Contract

• Pre-Conditions and Post-Conditions to
verify class invariants

• Example

• Transformation of a Shape instance
does not invalidate properties of the
concrete instance (i.e. Circle, Square,
etc.)

Applying the Contract

• How many methods does it apply to?

• How many classes?

• Is it debug only or should it propagate
into production?

• Want to avoid unnecessary checks if it
is debug only

Java “Conditional
Compilation”

public static final boolean ENFORCE_CONTRACT = false;
.
.
public void transform() {
	

 if(ENFORCE_CONTRACT) {
	

 checkPreCondition();
	

 }
 .
 .
 .
 if(ENFORCE_CONTRACT) {
	

 checkPostCondition();
 }
}

Problems With This
Approach

• Scattering

• Forgetting to add to a new method that
the contract applies to

• Forgetting to do both checks

• Have to modify code to release it

• CM Burden

Interception-Based

• Dynamic Proxies or Decorator Pattern

• help avoid CM Burden

• modify a property file instead of code

• help avoid the need to remember pairs

• Decorator does not provide a “catch-all”
so let’s try Dynamic Proxies

Dynamic Proxy Version

public Object invoke(Object proxy, Method m, Object[] args)
 throws Throwable
{
 Object result = null;

 try {
 checkPreCondition();
 result = m.invoke(obj, args);
 } catch (InvocationTargetException e) {
 throw e.getTargetException();
 } catch (Exception e) {
 } finally {
	

 	

 checkPostCondition();
 }
 return result;
}

What’s Wrong With This
Approach

• What if the contract doesn’t apply to all
methods?

• Applies based on type, not signature

• Requires interface

• What if reference does not use a Factory
method?

AspectJ to the Rescue

• Contract defined as an Aspect

• Use of before() and after() advice

• Can be compiled in or out without modifying
code or property files

• As of AspectJ 1.2 can be woven at runtime!

• Does not require interface or particular type;
use any arbitrary set of methods

Example:
Contract Aspect

/*
 * Created on Sep 10, 2004
 */
package nfjs.appliedaop.contract;

/**
 * @author brian
 */
public class BusinessThing {

 public void doSomething() {

 System.out.println("Doing something");

 }

 public void doSomethingElse() {

 System.out.println("Doing something else");

 }

 public void doSomethingUnrelated() {

 System.out.println("Doing something unrelated");

 }
}

/*
 * Created on Sep 10, 2004
 *
 * Enforce a contract in arbitrary and modularized ways.
 */
package nfjs.appliedaop.contract;

/**
 * @author brian
 */

public aspect ContractAspect {

 pointcut enforceContract() : execution (* BusinessThing.doSomething()) ||

 execution(* BusinessThing.doSomethingElse(..));

 before() : enforceContract() {

 System.out.println("Asserting a pre-condition");

 }

 after() : enforceContract() {

 System.out.println("Asserting a post-condition");

 }
}

Example: Basic
AspectJ Syntax

/*
 * Created on Sep 8, 2004
 */

package nfjs.appliedaop.basic;

/**
 * @author brian
 */

public class Foo {

 public void foo() {

 System.out.println("foo");

 }

 public void boo() {

 System.out.println("boo");

 }

 public void zoo(int i) {

 System.out.println("zoo: " + i);

 }

 public int hoo(int i) {

 System.out.println("hoo: " + i);

 return i;

 }
}

/*
 * Created on Sep 8, 2004
 */
package nfjs.appliedaop.basic;

/**
 * @author brian
 */

public aspect BasicAspect {

 pointcut callAll() : call(void Foo.*(..));

 pointcut executeFoo() : execution(void *.foo(..));

 pointcut callInt(int j) : call(* Foo.*(int)) && args(j) ;

 before() : callAll() {

 System.out.println("Before Call JoinPoint");

 }

 before() : executeFoo() {

 System.out.println("Before Execution JoinPoint");

 }

 before(int j) : callInt(j) {

 System.out.println("Before Call JoinPoint with int args: " + j);

 }
}

Controlled Access

• As an Architect, you make decisions
and set policies by which you *HOPE*
the developers abide

• How do you enforce this?

• grep and code inspections might
work but who has that kind of time?

Controlled Access
Examples

• No use of System.out or System.err

• No use of public variables

• No direct access to JDBC classes
without first going through a Facade

Example:
Controlled Access

Warning Aspect

/*
 * Created on Sep 9, 2004
 *
 * A Controlled Object. We don't want developers to access it
 * directly, so please don't.
 *
 */
package nfjs.appliedaop.controlled;

/**
 * @author brian
 */

public class ControlledObject {

 public void something() {

 System.out.println("Something");

 }

 public void somethingElse() {

 System.out.println("Something Else");

 }
}

/*
 * Created on Sep 9, 2004
 *
 * A Facade to a service that we'd like all of our developers to
 * use for calling ControlledObject methods.
 *
 */
package nfjs.appliedaop.controlled;

/**
 * @author brian
 *
 */
public class PreferredService {

 private ControlledObject co = new ControlledObject();

 public void doSomething() {

 co.something();

 }

 public void doSomethingElse() {

 co.somethingElse();

 }
}

/*
 * Created on Sep 9, 2004
 */
package nfjs.appliedaop.controlled;

/**
 * @author brian
 */
public abstract aspect ControlledAccessAspect {

 abstract pointcut callControlled() ;

 before() : callControlled()

 {

 System.out.println("Look, Buddy, we asked nicely! Don't call this directly");

 }
}

/*
 * Created on Sep 9, 2004
 *
 */
package nfjs.appliedaop.controlled;

/**
 * @author brian
 */
public abstract aspect PreferredServiceControlledAccessAspect
 extends ControlledAccessAspect {

 pointcut callControlled() : call(* ControlledObject.*(..))
 && !within(PreferredService);
}

/*
 * Created on Sep 9, 2004
 *
 * Our documentation in ControlledObject wasn't enough. Let's put one some
 * more pressure by introducing a warning.
 */

package nfjs.appliedaop.controlled;

/**
 * @author brian
 */

public aspect CompileWarningControlledAccessAspect
 extends PreferredServiceControlledAccessAspect {

 declare warning : callControlled() : "We're warning you, use the PreferredService";
}

/*
 * Created on Sep 9, 2004
 */
package nfjs.appliedaop.controlled;

/**
 * @author brian
 */
public aspect NoFoolinAroundControlledAccessAspect
 extends PreferredServiceControlledAccessAspect
{

 before() : callControlled() {

 throw new IllegalStateException("That's it!");

 }
}

Swing Thread Safety

• You are handed a non-trivial Swing
application with multiple threads and a
fixed price contract for new features

• While familiarizing yourself with the
code, you uncover a non-threadsafe
Swing component modification

• Do you cry or yawn?

Example : Swing
Thread Checker

Aspect

Production Aspect

Smart Proxy

• The first time I ever felt the need for
AOP was in a distributed computing
system

• To support dynamic failover, we put a
level of indirection in so that the “client”
could recover from a temporary failure

• On a remote exception, failover to
another server instance

Smart Proxy

<<Interface>>
ServerInterface

remoteMethod(Object foo) : void

ServerInterfaceSmartProxy

remoteMethod(Object foo) : void

ServerInterfaceRemoteStub

remoteMethod(Object foo) : void*

Client

<<uses>>

Problems With This
Approach

• Worked well enough, but it was a pain

• Hand-coded per interface

• Changes in the interface required
changes to the proxies

• Failover logic was scattered all over

Example: Smart
Proxy Aspect

Production Aspect
Ideas

Forcing Homogenous
Exceptions For a Layer

• If you are building a service or a subsystem
you probably want to control what kind of
exceptions get thrown to your clients

• You can manually wrap every method, but
that involves scattering and a rigid policy

• AspectJ can be used to catch all Exceptions
thrown and convert them to something you
want to expose

Example :
Homogenous

Exceptions Aspect

Modular
Synchronization

• I once had a client with a Swing app
that shared access to a JDBC
Connection via multiple threads

• Discovered a deadlock in the Oracle
JDBC driver

• Re-architecting wasn’t an option

Decorator
Synchronization

• Ended up implementing a Decorator
that used Reader/Writer locks to avoid
the problem

• Wrapped instances of Connection were
returned

• Don’t leak out unwrapped versions!

AOP Synchronization

• Modularized

• Can support different synchronization
policies in different circumstances

Spring + AspectJ

Spring AspectJ Support

• execution

• within

• this

• target

• args

• @syntax

• AspectJ pointcut designators for
method interception

• Note: not field interception or
static introduction

• Some special handling on
this/target pointcuts due
to Spring’s Proxy-based
implementation

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="mya"

 class="net.bosatsu.spring.A">

 <property name="greeting">

 <value>Hola</value>

 </property>

 </bean>

 <bean id="mywrappeda" class="org.springframework.aop.framework.ProxyFactoryBean">

 <property name="proxyInterfaces">

 <list><value>net.bosatsu.spring.IA</value></list>

 </property>

 <property name="interceptorNames">

 <list><value>logger</value></list>

 </property>

 <property name="target">

 <ref bean="mya"/>

 </property>

 </bean>

 <bean id="logger" class="net.bosatsu.spring.LoggingAdvice">

 </bean>
</beans>

http://www.springframework.org/dtd/spring-beans.dtd
http://www.springframework.org/dtd/spring-beans.dtd

package net.bosatsu.spring;

import java.lang.reflect.Method;

import org.springframework.aop.MethodBeforeAdvice;

public class LoggingAdvice implements MethodBeforeAdvice
{

 public void before(Method method, Object [] args, Object target) throws Throwable

 {

 IA a = (IA) target;

 System.out.println("A is about to say: " + a.getGreeting());

 }
}

<?xml version="1.0" encoding="UTF-8"?>

 <beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:aop="http://www.springframework.org/schema/aop"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/aop

 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <aop:config>

 <aop:aspect id="sayHello" ref="logger">

 <aop:pointcut id="mypc" expression="execution(* sayHello(..)) and target(bean)"/>

 <aop:before pointcut-ref="mypc" method="announce" arg-names="bean" />

 </aop:aspect>

 </aop:config>

 <bean id="mya" class="net.bosatsu.spring.A">

 <property name="greeting">

 <value>Güten Tag</value>

 </property>

 </bean>

 <bean id="logger" class="net.bosatsu.spring.LoggingPOJO" />

</beans>

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/aop/spring-aop.xsd

package net.bosatsu.spring;

public class LoggingPOJO {

 public void announce(Object o) {

 IA a = (IA) o;

 System.out.println("I could say something about the fact "
 + "that someone is about to say: "+ a.getGreeting());

 }
}

package net.bosatsu.spring;

public class LoggingPOJO {

 public void announce(Object o) {

 IA a = (IA) o;

 System.out.println("I could say something about the fact "
 + "that someone is about to say: "+ a.getGreeting());

 }
}

Just a POJO!

Static AOP

Static AOP

• We have mostly been talking about
dynamic AOP usage

• Separation of concerns can have static
benefits as well

Domain Modeling

• What’s potentially wrong this?

Person

String name;
int age;
int numDogsOwned;
getName():String
getAge() : int
getNumDogsOwned() : int

Mixed-Role Cohesion

• Dog Ownership and Personness are
separate concepts

• Person class is encumbered with Dog
Ownership

• Not necessarily bad, but can you
imagine someone who doesn’t own a
dog?

Example : Domain
Modeling Aspect

Conclusions

• AOP

• is not a fad; is not academic navel-gazing

• does not replace OO abstraction
modeling

• is about modularizing and separating
concerns

• is about more than logging and tracing!

References

• Colyer, Adrian, http://jroller.com/page/colyer

• Colyer, Adrian et al, “Eclipse AspectJ : Aspect-Oriented
Programming w/ AspectJ and the Eclipse AspectJ
Development Tools”, Addison-Wesley, 2004.

• Laddad, Ramnivas, “AspectJ in Action”, Manning, 2003.

• Miles, Russ, “AspectJ Cookbook”, O’Reilly, 2004.

• Page-Jones, Meilir, “Fundamentals of Object-Oriented
Design in UML”, Addison-Wesley, 2000.

Please Write Your
Reviews

Feedback/Questions: brian@bosatsu.net

Slides:
http://www.bosatsu.net/talks/AppliedAOP.pdf

Examples:
http://www.bosatsu.net/talks/examples/AppliedAOP-Examples.zip

mailto:brian@bosatsu.net
mailto:brian@bosatsu.net
http://www.bosatsu.net/talks/AppliedAOP.pdf
http://www.bosatsu.net/talks/AppliedAOP.pdf
http://www.bosatsu.net/talks/AppliedAOP
http://www.bosatsu.net/talks/AppliedAOP

