Introduction to
Aspect-Oriented
Programming

NOVAJUG - Apr. 27, 2004
Brian Sletten
brian@bosatsu.net

What AOP Is Not

® Brand New

® A Silver Bullet

® A Replacement for OOP
® A Patch For Bad Design

® Only Good for Academic Navel-
Gazing

® Backstory
®» AOP
3 Aspect]

® Other AOP
Systems

® Summary

Agenda

Backstory

History

Paradigm Abstraction

Procedural Functional
Object-Oriented Object
Design Patterns Design
Aspect-Oriented Concern

Separation of Concerns (SOC)

® Intellectual forebear to AOP

® Reduction of Code Coupling and
Tangling

® Flexibility and Reuse in Design
® “Pay As You Go”

What is a Concern?

“...A specific requirement or consideration
that must be addressed in order to
satisfy the overall system goal...”

“Aspect/| in Action”, p.9

Example Concerns

® Logging

® Thread Synchronization

® Persistence

® Domain Modeling/Business Logic
® Security

® Exception-Handling

Prism Metaphor for SOC

Business Logic Thread Synchronization

A

Built System

Requirements

Security

Some Non-AOP Solutions

® Dynamic Proxies

® Controlled Access to underlying object
® Servlet Filters

® XSLT Transformations, Compression

® Design Patterns

® Decorator, Factory, Visitor Patterns

Interception Pattern

—— ® Different approaches
demonstrate the notion

of “interception”

Decorator used below but
could also be Dynamic
Proxies or Filters

T T L . i W

“Problems”

® Design Patterns

® Invasive, complex, requires foresight to plan
for use of Factory, Visitor, etc.

® Decorator works on instances, not classes

® Dynamic Proxies

® Requires the use of interfaces

® Works on instances, creation of “wrapped”
Instances Is an issue

OO i1s Good For

i A i . .
[. Object Abstractions
 [Too() |
| bar() |
E JAN |
B | c i D

int z : String name | int id

bar() | | Date dob | bar()

L : : ZOO_()

I

OO Is Not Good For

int z String name int id
bar() Date dob bar()

What is a Cross-Cutting
Concern?

® A feature or requirement that does not
fit into a class-only decomposition

® Poorly modularized cross-cutting
concerns result in

® Code Tangling
® Code Scattering

~—"

Code Tangling

® Multiple concerns
complicate class behavior

e
-
-
-
-
-
-
-
-
-
-~
-
-
-
-
-
-~
-
-
-
-
-
-
-~
-

—— ® Reuse is hampered

I ® Maintenance is a bear

B @ Did security get called before

' hersistence?

® Did | remember to
synchronize after the logging?

B T i i e e i s

Code Scattering

JJiaai‘IJiiqaaiaaiiiiIiiAIiaaaaidDdJ'aa'i'Iig'iI ‘IiiI‘Jil Sodia

Socket Creation in
Tomcat

4 Aspect Visualiser

JJiaai‘iJiia44iaaiiiiI‘iiJIiJiddiii&J'iiii'Iii'iI ‘IiiI‘Jii

% Aspect Visualiser

JJinQ

Fair modularity
Classloading in
Tomcat

Logging In
B Tomcat

ngdaaaiJAiigi JH‘QE ddé Bad modularity

iiegiaaaaiaiaJQaaﬂggggiQ

Analysis compliments of Ron Bodkin (http://www.newaspects.com)

Limitations of OO

® Object-oriented programming is great
for modeling object abstractions

® Suffers from the “Tyranny of the
Dominant Decomposition”*

® Languages like Java support packages,
Interfaces and classes but not “features”

*Term from the Hyper/] team

What is an Aspect?

“...A unit of modularization
for cross-cutting concerns”

Goals of AOP

® ... to appropriately modularize cross-
cutting concerns

® Does not replace class-based
decomposition of OOP

® Promotes architectural flexibility and
reduced coupling/tangling

AOP Process

® Remember the Prism

® Once the concerns are separated and
modularized, they are “woven”
together

® Compile-time or run-time

® Production and Development Aspects

Benefits of AOP

® Each module has a clear definition

® Simpler to implement

® Modules know as little about each
other as possible

® Easier to maintain

® Better chance for reuse

® Evolution of system architecture

® Weave features as needed

Aspect] Overview

® Developed at XEROX PARC
® Team lead by Gregor Kiczales

® Designed as an extension to Java

® Aspects look an awful lot like Classes

® Requires a separate compiler but emits
standard bytecode that can run on any JVM

® Easy to incorporate into conventional Java
build processes

Aspect] Today

® Spun off to the Eclipse Project

® Maintained by many of the same
people

® AJDT is a cool plug-in for Eclipse

® Increasingly in use in development and
production systems

What is a Join Point?

® Any identifiable/describable point in
the control flow of a program

® A method call (caller side)
® A method execution (callee side)
® Setting/Getting a variable

® A constructor

What is a Pointcut?

® Expressions that select some set of join
points and their context

® arguments
® Object being called
® return values

® variable being referenced

What i1s Advice?

® Pieces of code that are associated with
one or more pointcuts

® Executed when the pointcut is reached
® before advice - executed before pointcut
® after advice - executed after pointcut

® around advice - executed around point

Putting it together

® A join point is where you would like to
run some code (before,after,around
-advice) when (pointcut) you get there

Finally, Some Code!

public class Foo {
private int count;

public Foo() {
}

public void sayHello() {
System.out.println("Hello, AOP!");
count+i+

}

public int getCount() {
return count;

}

B

A Simple Aspect

public aspect FooAspect {
before() : call(* sayHello(..))

{

System.out.println("Before the greeting!");

}

The aspect “FooAspect” has before() advice
for the pointcut specifying any call to a method
called “sayHello” no matter how many
arguments it takes.

Main method

public static void main(String] args—=) =
Foo £ = new Foo();
f.sayHello();

}
FooAspect — Fﬁ?
<<aspect>> - L Cl-cl)ul?
before() : call(sayHello) | <<advises>> fnaayin(e) o()

Making it happen

-classpath .:
java -cp .:
Before the greeting!
Hello, AOP!

s the Aspect] compiler
is the runtime support for Aspect)
It compiles the into a
standard

Add Another Pointcut

before() :

{
System.out.println("Also before the greeting!");

-classpath .:
java -cp .:
Before the greeting!
Also before the greeting.
Hello, AOP!

= S S5l e

P S e T e T T .

call vs. execute

F

main .
sayHello()
call(* sayHello (.)) [\executlon(* sayHello (..))

Not conventional UML, “Foo” treated
as two Objects just for clarity

around() advice

int around() : execution(* getCount())

{
System.out.println("Before getCount()");

int retValue = .
System.out.println("After getCount()");

1f(retvValue ==) {
System.out.println("That was the first calll!”);

}

return retvValue;

}

Notice the return type specified for the around() advice.
causes the actual method to be called.

Some ldeas for before() advice

® Ensure a user has the right privileges to
make the call in question

® Assert any precondition

® Help debug difficult problems like calling
Swing code from the wrong thread!

Some Ildeas for around() advice

® Obtain thread locks before calling
proceed; release when done

® Only synchronize when you need it

® Allow ditferent synchronization policies

® Catch any exception thrown on any
method in an interface

Just the Tip of the Iceberg!

® Aspect] has so much more to offer
® Abstract/reusable aspects
® Pointcut context
® Exception softening

® Static cross-cutting

Other AOP
Systems

Hyper/}

® Developed at IBM
® Harold Osher and Terri Parr

® Comes out of the Subject-Oriented
Programming efforts

® Multi-dimensional separation of
concerns (MDSOC)

Hyper/] (cont)

® Concerns are composed by integrating
“hyperslices” into “hypermodules”

® Hyperslices are “declaratively complete”

® Abstract references can be resolved by any
hyperslice with an appropriate signature

® Concern mappings and relationship types
are specified (i.e. mergeByName)

® Symmetric - no distinguished “base”

Hyper/) Config File

Export-hijc

-hyperspace // List of Java files to be used
composable class Personnel.*;
composable class Personnel.Export.*;
- concerns // Concern Mapping
package Personnel : Feature.Personnel
package Personnel.Export : Feature.Export
- hypermodules // Composition Relationships
hypermodules ExportPersonnel
hyperslices:
Feature.Personnel, Feature.Export;
relationships:
mergeByName;
end hypermodule;

Taken from Hyper/] Tutorial ©2001, 2002 IBM

Composition Filters

® Developed at the University of Twente
® Mehmet Aksit and Lodewijk Bergmans

® “Interception”-based Java
implementation

® Work includes formalisms for
composing filters

® Very compelling but mostly academic

Demeter)

® Work done by Dr. Karl Lieberherr and
students at Northeastern Univ.

® Originally as Separation of Concerns (SOC)

® Based on “Adaptive Programming”
model - special case of AOP

® Building blocks are graphs and traversals

® Traversals cross-cut graphs

Demeter] (cont)

® Follows Law of Demeter

® “Only talk to your immediate friends that
share your concerns”

® Keeps tangling and complication down
by cleanly separating concerns as
graph traversals

More Java-based AOP

® JBOSS AOP
® Dynaop

3 JAC

® AspectWerkz
® Nanning

JBOSS AOP

® Built around Dynamic Proxies and
interceptor stacks

® Add logging, persistence, replication,
remoteness, ACIDity, caching and security to
POJOs without changing Java code

® Smart resolution for method calls

® Avoid the marshalling penalty if target object
lives in the same VM

Dynaop

® Designed by “Crazy” Bob Lee to be a
practical, efficient and developer
friendly AOP implementation

® Eschews some of the esoterica of Aspect]
® Comes with a documenting tool

® Uses BeanShell for configuration

Dynaop (cont.)

® Proxy-based versus byte-code
generating to allow the use of original
and unmodified versions of classes

® Supports Object Serialization of
wrapped classes

Dynaop (cont.)

® Uses set operations to combine
pointcuts via BeanShell scripts

import java.util.List;

// pick all List implementations in the"com.mycompany" package.
classPointcut =
intersection(List.class,packageName("com.mycompany")) ;

// pick all get methods.
methodPointcut = GET METHODS;

// extends methodPointcut to include methods that return List.

methodPointcut =
union(methodPointcut, returnType(List.class));

// extends methodPointcut again to include the size() method.

methodPointcut =
union(methodPointcut, List.class.getMethod('"size", null));

e i i e B i e i i

JAC

® Based on Renaud Pawlak’s Ph.D. Thesis
® Part of ObjectWeb Middleware Project

® Adds CMP, clustering, distributed
transactions (via JOTM) and access

authentication to POJOs

® Has Rapid Application Development
features

® UMLAF IDE (UML Aspectual Factory)

AspectWerkz

® Most work by Jonas Bonér and
Alexandre Vasseur

® Supported by BEA

® Lightweight, runtime bytecode
modification via ClasslLoader

® Advice can be modified at runtime
® XML-configuration or attributes

® Aspects/advice are written in plain Java

Nanning

® Most work by Jon Tirsen

® Simple “Interception”-based
mechanism using Dynamic Proxies

® Also supports Mixins and Introduction
(static cross-cutting)

® Designed to add EJB and J2EE kinds of
features to POJOs

Non-Java AOP

® Largely unremarkable, inactive and
lagging behind Java-based activity

® .NET offers compelling cross-language
pointcut vision

® AspectR and Aspect.pm seem to be
dead

AspectC++

® Modeled after Aspect)

® C++ language extensions that require a
separate compiler

® Doesn’t presently support get/set join points

® Commercial support from Pure Systems
GmbH

® Plug-ins for VS.NET ($$) and Eclipse (in dev.)

AspectS

® Project to add AOP concepts to the
Squeak environment

® Like many other approaches, the goal
was not to modify the Smalltalk
language or environment

AOP Today

® Fairly steep learning curve

® Learn good OO first

® Tools are too primitive for average use
® AJDT is improving this situation
® AOP augments OO

® Class-based decomposition works for many
situations (i.e. modeling object abstractions)

AOP Today (cont)

® Folded in gradually in many production
systems

® Very popular as part of development
systems (sanity checks, mock objects,
etc.) -- compiled out of production

® LOTS of research to make it easier,
unify the approaches, improve aspect
weaving and composition

ATrack

® Open source project to build a proof of
concept AOP system from the ground
up using Aspect]
® Bug Tracking system with persistence,

transaction, session management, exception
handling and logging as aspects

® |s also developing AJEE, a first cut at a
“Standard Aspect Library”

AOP Consulting

® AspectMentor

http://www.aspectmentor.com/

® New Aspects of Software

http://www.newaspects.com/

Getting Started

® Nanning, AspectWerkz and JAC are

lightweight b

ut don’t have the best

conceptual introductions

® Dynaop is developer-friendly

® Aspect] is the most “commercialized”
AOP tool (tutorials, etc.)

® “Aspect] in Action” by Ramnivas Laddad is a
great book (Manning Publications)

AOSD ‘05

® Going to be held in Chicago

® http://www.aosd.net/conference

Links

Aspectd http://www.eclipse.org/aspectj
AJDT http://www.eclipse.org/ajdt/
Hyper/Jd http://www.alphaworks.ibm.com/tech/hyper]

Composition Filters

http://trese.cs.utwente.nl/
composition filters/

http://www.ccs.neu.edu/research/demeter/

DemeterJ DemeterJava/
AOSD http://www.aosd.net
http://www. jboss.org/developers/projects/
JBoss AOP £ 3 2 =
iboss/aop
Dynaop https://dynaop.dev. java.net/
JAC http://jac.objectweb.org/
AspectWerkz http://aspectwerkz.codehaus.org/
Nanning http://nanning.codehaus.org/
AspectC++ http://www.aspectc.org/
http://www.prakinf.tu-ilmenau.de/~hirsch/
AspectS Projects/Squeak/AspectS/
ATrack https://atrack.dev.java.net/

B e T e

R R B S

