
Introduction to 
Aspect-Oriented 

Programming
NOVAJUG - Apr. 27, 2004

Brian Sletten
brian@bosatsu.net



What AOP Is Not

Brand New

A Silver Bullet

A Replacement for OOP

A Patch For Bad Design

Only Good for Academic Navel-
Gazing



Agenda
Backstory

AOP

AspectJ

Other AOP 
Systems

Summary



Backstory



History

Paradigm Abstraction

Procedural Functional

Object-Oriented Object

Design Patterns Design

Aspect-Oriented Concern



Separation of Concerns (SOC)

Intellectual forebear to AOP

Reduction of Code Coupling and 
Tangling

Flexibility and Reuse in Design

“Pay As You Go”



What is a Concern?

“...A specific requirement or consideration 
that must be addressed in order to 
satisfy the overall system goal...”

“AspectJ in Action”, p.9



Example Concerns

Logging

Thread Synchronization

Persistence

Domain Modeling/Business Logic

Security

Exception-Handling



Prism Metaphor for SOC

Business Logic Thread Synchronization

Persistence

Security

Logging

Requirements

Built System



Some Non-AOP Solutions

Dynamic Proxies

Controlled Access to underlying object

Servlet Filters

XSLT Transformations, Compression

Design Patterns

Decorator, Factory, Visitor Patterns



Interception Pattern
Different approaches 
demonstrate the notion 
of “interception”

DecoratorClass2 ReceiverDecoratorClass1

foo()

foo()

foo()

Decorator used below but
could also be Dynamic 

Proxies or Filters



“Problems”
Design Patterns

Invasive, complex, requires foresight to plan 
for use of Factory, Visitor, etc.

Decorator works on instances, not classes

Dynamic Proxies

Requires the use of interfaces

Works on instances, creation of “wrapped” 
instances is an issue



AOP



OO is Good For

A

int x
int y
foo()
bar()

B

int z
bar()
baz()

D

int id
bar()
zoo()

C

String name
Date dob

Object Abstractions



OO Is Not Good For

A

int x
int y
foo()
bar()

B

int z
bar()
baz()

D

int id
bar()
zoo()

C

String name
Date dob

Concern Abstractions that are “Cross-Cutting”



A feature or requirement that does not 
fit into a class-only decomposition

Poorly modularized cross-cutting 
concerns result in

Code Tangling

Code Scattering

What is a Cross-Cutting 
Concern?



Code Tangling
A

int x
int y
foo()
bar()

Multiple concerns 
complicate class behavior

Reuse is hampered

Maintenance is a bear

Did security get called before 
persistence?

Did I remember to 
synchronize after the logging?



Code Scattering

Analysis compliments of Ron Bodkin (http://www.newaspects.com)

Good Modularity
Socket Creation in 

Tomcat

Fair modularity
Classloading in

Tomcat 

Bad modularity
Logging in

Tomcat 



Limitations of OO

Object-oriented programming is great 
for modeling object abstractions

Suffers from the “Tyranny of the 
Dominant Decomposition”*

Languages like Java support packages, 
interfaces and classes but not “features”

*Term from the Hyper/J team



What is an Aspect?

“...A unit of modularization 
for cross-cutting concerns”



Goals of AOP

... to appropriately modularize cross-
cutting concerns

Does not replace class-based 
decomposition of OOP

Promotes architectural flexibility and 
reduced coupling/tangling



AOP Process

Remember the Prism

Once the concerns are separated and 
modularized, they are “woven” 
together

Compile-time or run-time

Production and Development Aspects



Benefits of AOP
Each module has a clear definition

Simpler to implement

Modules know as little about each 
other as possible

Easier to maintain

Better chance for reuse

Evolution of system architecture

Weave features as needed



AspectJ



AspectJ Overview
Developed at XEROX PARC

Team lead by Gregor Kiczales

Designed as an extension to Java

Aspects look an awful lot like Classes

Requires a separate compiler but emits 
standard bytecode that can run on any JVM

Easy to incorporate into conventional Java 
build processes



AspectJ Today

Spun off to the Eclipse Project

Maintained by many of the same 
people

AJDT is a cool plug-in for Eclipse

Increasingly in use in development and 
production systems



What is a Join Point?

Any identifiable/describable point in 
the control flow of a program

A method call (caller side)

A method execution (callee side)

Setting/Getting a variable

A constructor



What is a Pointcut?

Expressions that select some set of join 
points and their context

arguments

Object being called

return values

variable being referenced



What is Advice?

Pieces of code that are associated with 
one or more pointcuts

Executed when the pointcut is reached

before advice - executed before pointcut

after advice - executed after pointcut

around advice - executed around point



Putting it together

A join point is where you would like to 
run some code (before,after,around 
-advice) when (pointcut) you get there



Finally, Some Code!
public class Foo {

    private int count;

    public Foo() {
    }

    public void sayHello() {
        System.out.println("Hello, AOP!");
        count++;
    }

    public int getCount() {
        return count;
    }
}



A Simple Aspect
public aspect FooAspect {
    before() : call( * sayHello(..) )
    {
      System.out.println("Before the greeting!");
    }
}

The aspect “FooAspect” has before() advice
for the pointcut specifying any call to a method

called “sayHello” no matter how many
arguments it takes.



Main method
    public static void main( String [] args ) {
        Foo f = new Foo();
        f.sayHello();
    }

Foo
int count
sayHello()
main()

FooAspect
<<aspect>>

before() : call( sayHello ) <<advises>>



Making it happen
ajc -classpath .:/usr/local/aspectj1.1/lib/aspectjrt.jar *.java
java -cp .:/usr/local/aspectj1.1/lib/aspectjrt.jar Foo
Before the greeting!
Hello, AOP!

ajc is the AspectJ compiler
aspectjrt.jar is the runtime support for AspectJ

It compiles the Java source files into a
standard Java class file



Add Another Pointcut
before() : execution( * sayHello(..) )
{
  System.out.println("Also before the greeting!");
}

ajc -classpath .:/usr/local/aspectj1.1/lib/aspectjrt.jar *.java
java -cp .:/usr/local/aspectj1.1/lib/aspectjrt.jar Foo
Before the greeting!
Also before the greeting.
Hello, AOP!



call vs. execute
FooFoo

main

sayHello()

call( * sayHello (..) ) execution( * sayHello (..) )

Not conventional UML, “Foo” treated 
as two Objects just for clarity



around() advice
    int around() : execution( * getCount() )
    {
        System.out.println( "Before getCount()" );
        int retValue = proceed();
        System.out.println("After getCount()");

        if( retValue == 0 ) {
            System.out.println("That was the first call!" );
        }

        return retValue;
    }

Notice the return type specified for the around() advice.
proceed() causes the actual method to be called.



Some Ideas for before() advice 

Ensure a user has the right privileges to 
make the call in question

Assert any precondition

Help debug difficult problems like calling 
Swing code from the wrong thread!



Some Ideas for around() advice

Obtain thread locks before calling 
proceed; release when done

Only synchronize when you need it

Allow different synchronization policies

Catch any exception thrown on any 
method in an interface



Just the Tip of the Iceberg!

AspectJ has so much more to offer

Abstract/reusable aspects

Pointcut context

Exception softening

Static cross-cutting



Other AOP 
Systems



Hyper/J

Developed at IBM

Harold Osher and Terri Parr

Comes out of the Subject-Oriented 
Programming efforts

Multi-dimensional separation of 
concerns (MDSOC)



Hyper/J (cont)
Concerns are composed by integrating 
“hyperslices” into “hypermodules”

Hyperslices are “declaratively complete”

Abstract references can be resolved by any 
hyperslice with an appropriate signature

Concern mappings and relationship types 
are specified (i.e. mergeByName)

Symmetric - no distinguished “base”



Hyper/J Config File
Export.hjc

-hyperspace // List of Java files to be used
    composable class Personnel.*;
    composable class Personnel.Export.*;
- concerns // Concern Mapping
    package Personnel : Feature.Personnel
    package Personnel.Export : Feature.Export
- hypermodules // Composition Relationships
    hypermodules ExportPersonnel
        hyperslices:
            Feature.Personnel, Feature.Export;
        relationships:
            mergeByName;
    end hypermodule;

Taken from Hyper/J Tutorial ©2001, 2002 IBM



Composition Filters
Developed at the University of Twente

Mehmet Aksit and Lodewijk Bergmans

“Interception”-based Java 
implementation

Work includes formalisms for 
composing filters

Very compelling but mostly academic



Work done by Dr. Karl Lieberherr and 
students at Northeastern Univ.

Originally as Separation of Concerns (SOC)

Based on “Adaptive Programming” 
model - special case of AOP

Building blocks are graphs and traversals

Traversals cross-cut graphs

DemeterJ



DemeterJ (cont)

Follows Law of Demeter

“Only talk to your immediate friends that 
share your concerns”

Keeps tangling and complication down 
by cleanly separating concerns as 
graph traversals



More Java-based AOP

JBOSS AOP

Dynaop

JAC

AspectWerkz

Nanning



JBOSS AOP
Built around Dynamic Proxies and 
interceptor stacks

Add logging, persistence, replication, 
remoteness, ACIDity, caching and security to 
POJOs without changing Java code

Smart resolution for method calls

Avoid the marshalling penalty if target object 
lives in the same VM



Dynaop

Designed by “Crazy” Bob Lee to be a 
practical, efficient and developer 
friendly AOP implementation

Eschews some of the esoterica of AspectJ

Comes with a documenting tool

Uses BeanShell for configuration



Dynaop (cont.)

Proxy-based versus byte-code 
generating to allow the use of original 
and unmodified versions of classes

Supports Object Serialization of 
wrapped classes



Dynaop (cont.)
Uses set operations to combine 
pointcuts via BeanShell scripts

import java.util.List; 

// pick all List implementations in the"com.mycompany" package. 
classPointcut = 
    intersection(List.class,packageName("com.mycompany")); 

// pick all get methods. 
methodPointcut = GET_METHODS; 

// extends methodPointcut to include methods that return List. 
methodPointcut = 
    union(methodPointcut, returnType(List.class)); 

// extends methodPointcut again to include the size() method. 
methodPointcut = 
    union( methodPointcut, List.class.getMethod("size", null) ); 



JAC
Based on Renaud Pawlak’s Ph.D. Thesis

Part of ObjectWeb Middleware Project

Adds CMP, clustering, distributed 
transactions (via JOTM) and access 
authentication to POJOs

 Has Rapid Application Development 
features

UMLAF IDE (UML Aspectual Factory)



AspectWerkz
Most work by Jonas Bonér and 
Alexandre Vasseur

Supported by BEA 

Lightweight, runtime bytecode 
modification via ClassLoader

Advice can be modified at runtime

XML-configuration or attributes

Aspects/advice are written in plain Java



Nanning

Most work by Jon Tirsen

Simple “Interception”-based 
mechanism using Dynamic Proxies

Also supports Mixins and Introduction 
(static cross-cutting)

Designed to add EJB and J2EE kinds of 
features to POJOs



Non-Java AOP

Largely unremarkable, inactive and 
lagging behind Java-based activity

.NET offers compelling cross-language 
pointcut vision

AspectR and Aspect.pm seem to be 
dead



AspectC++

Modeled after AspectJ

C++ language extensions that require a 
separate compiler

Doesn’t presently support get/set join points

Commercial support from Pure Systems 
GmbH

Plug-ins for VS.NET ($$) and Eclipse (in dev.)



AspectS

Project to add AOP concepts to the 
Squeak environment

Like many other approaches, the goal 
was not to modify the Smalltalk 
language or environment



Summary



AOP Today
Fairly steep learning curve

Learn good OO first

Tools are too primitive for average use

AJDT is improving this situation

AOP augments OO

Class-based decomposition works for many 
situations (i.e. modeling object abstractions)



AOP Today (cont)
Folded in gradually in many production 
systems

Very popular as part of development 
systems (sanity checks, mock objects, 
etc.) -- compiled out of production

LOTS of research to make it easier, 
unify the approaches, improve aspect 
weaving and composition



ATrack

Open source project to build a proof of 
concept AOP system from the ground 
up using AspectJ

Bug Tracking system with persistence, 
transaction, session management, exception 
handling and logging as aspects

Is also developing AJEE, a first cut at a 
“Standard Aspect Library”



AOP Consulting

AspectMentor

http://www.aspectmentor.com/

New Aspects of Software

http://www.newaspects.com/



Getting Started
Nanning, AspectWerkz and JAC are 
lightweight but don’t have the best 
conceptual introductions

Dynaop is developer-friendly

AspectJ is the most “commercialized” 
AOP tool (tutorials, etc.)

“AspectJ in Action” by Ramnivas Laddad is a 
great book (Manning Publications)



AOSD ‘05

Going to be held in Chicago

http://www.aosd.net/conference



Links
AspectJ http://www.eclipse.org/aspectj

AJDT http://www.eclipse.org/ajdt/

Hyper/J http://www.alphaworks.ibm.com/tech/hyperj

Composition Filters http://trese.cs.utwente.nl/
composition_filters/

DemeterJ http://www.ccs.neu.edu/research/demeter/
DemeterJava/

AOSD http://www.aosd.net

JBoss AOP http://www.jboss.org/developers/projects/
jboss/aop

Dynaop https://dynaop.dev.java.net/

JAC http://jac.objectweb.org/

AspectWerkz http://aspectwerkz.codehaus.org/

Nanning http://nanning.codehaus.org/

AspectC++ http://www.aspectc.org/

AspectS http://www.prakinf.tu-ilmenau.de/~hirsch/
Projects/Squeak/AspectS/

ATrack https://atrack.dev.java.net/


